Why Utilities Are Rethinking Their Residential (and Small Commercial) Rates

National Energy and Utility Affordability Coalition Plenary Session

PRESENTED BY Philip Hanser

Denver, CO June 6, 2016

The rate design process

But, residential (and small commercial) rates have long been largely misaligned

Significantly more skewed for distribution utilities whose costs are nearly entirely fixed.

Misaligned rates lead to questionable decisions

Customers see their own savings, but don't see the full picture

0 12am

3am

6am

Increases in customer generation may have two effects:

- Reduce capacity costs
 - Depends on the degree generation is coincident with system peak
 - Depends on the degree of customer generation reliability
- Increase other costs
 - Intermittency may result in —
 - Increases generation ramping requirements (the duck!)
 - Increased level of operating reserves (idling generation)
 - Reduce efficiency of unit commitment
 - There may also be additional costs associated with maintaining power quality
 - And distribution-level capacity upgrades may be needed

9am

12pm

Hour

3pm

6pm

9pm

The "Duck Curve"

The Goose Has Landed

All data taken from CAISO website. Graph summarizes hourly data, March28-April 3, 2013-2016.

Utility Trends and Rates

- Flat electric sales
 - Slow growth, sluggish economy
- Low natural gas prices
- Low wholesale power prices
 - All of these reduce sales, but don't reduce fixed costs.
- RTO cost increases, mission creep
 - Largely out of utility control, talk to the FERC

- Infrastructure spending requests
 - Meeting new needs
 - Replacing old with new expensive and results in
 - Increasing rates
- Cost recovery to trackers and surcharges
 - Better matching of rates and costs
- PBR/formula rates push
 - Aimed at responding to efficiency push

New metering technology improves measuring usage and enables new rates

Traditional meter

Smart meter

Nearly one in every two households now has a smart meter

Time Varying Rates are One Option

Summary of Time Varying Rates

Rate	Description
Time-of-Use (TOU)	Charges a higher price during all weekday peak hours and a discounted price during off-peak and weekend hours
Super Peak TOU	Similar to the TOU with the exception that the peak window is shorter in duration (often four hours), leading to a stronger price signal
Critical Peak Pricing (CPP)	Customers are charged a higher price during the peak period on a limited number of event days (often 15 or less); the rate is discounted during the remaining hours
CPP-TOU Combination	A TOU rate in which a moderate peak price applies during most peak hours of the year, but a higher peak price applies on limited event days
Peak Time Rebate (PTR)	The existing flat rate combined with a rebate for each unit of reduced demand below a pre-determined baseline estimate during peak times of event days
Flat Real Time Pricing (RTP)	A rate with hourly variation that follows LMPs, but with capacity costs allocated equally across all hours of the year
Critical Peak RTP	A rate with hourly variation based on LMPs and with a capacity cost adder focused only during event hours, creating a strong price signal at these times

Demand charges may be another

	Old Two-Part Rate
Fixed charge	\$10/month
Volumetric charge	10 cents/kWh
Demand charge	\$0

(Rates shown are purely illustrative)

or...

Don't think utilities want to be villains...

They want to be heroes like we all do

Utilities are trying to listen

Sometimes we all need a little help doing so

Presenter Information

PHILIP Q HANSER

Principal | Cambridge Phil Hanser@brattle.com +1.617.234.5768

Philip Q Hanser is a principal of The Brattle Group and has over thirty-five years of experience in the energy industry. He has appeared as an expert witness before the U.S. Federal Energy Regulatory Commission (FERC), and numerous state public utility commissions, environmental agencies, Canadian utility boards, as well as arbitration panels, and in federal and state courts and has consulted widely across the industry. Prior to joining The Brattle Group, he held teaching positions at the University of the Pacific, University of California at Davis, and Columbia University, and has served as a guest lecturer at the Massachusetts Institute of Technology, Stanford University, and the University of Chicago. He currently is a Senior Associate in the Mossavar-Rahmani Center for Business and Government at the Harvard Kennedy School and leads a seminar in public policy analysis. He has also served as the manager of the Demand-Side Management Program at the Electric Power Research Institute (EPRI).